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Synthesis of optically active b-alkyl aspartate via
[3,3] sigmatropic rearrangement of a-acyloxytrialkylsilane
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Abstract—The synthesis of four types of optically active b-carbon-substituted analogs of threo-b-hydroxy aspartate (THA) and a b-
carbon-substituted analog of threo-b-benzyloxy aspartate (TBOA), which are potent blockers of excitatory amino acid transporters
in the mammalian central nervous system, via the chirality-transferring ester–enolate Claisen rearrangement of a-acyloxytrialkyl-
silane is described.
� 2004 Elsevier Ltd. All rights reserved.
CO2H

NH2

R1

HO2C
CO2H

NH2

R1

HO2C
R2 R2

2S
3R

1a: R1= OH,  R2= H (THA)
1b: R1= PhCH2O,  R2= H (TBOA)
1c: R1= Me,  R2= H
1d: R1= Me,  R2= Me
1e: R1= PhCH2CH2,  R2= H

2c: R1= Me,  R2= H
2d: R1= Me,  R2= Me

2S
3S

Figure 1.
LL-Glutamate acts as an excitatory neurotransmitter in
the mammalian central nervous system and is as well a
potent neurotoxin.1 For normal neurotransmission by
glutamate, it is necessary to maintain the extracellular
glutamate concentration below neurotoxic levels and,
therefore, glutamate transporters play an important role
for this purpose.2;3 To date, five subtypes of glutamate
transporters have been found in mammalian tissues.3

For elucidation of the intrinsic properties and physio-
logical roles of transporters, development of subtype-
selective inhibitors of glutamate transporters is required.
(2S,3S)-THA 1a4 and (2S,3S)-TBOA 1b5 are known as
representative inhibitors; in particular, the latter exhibits
potent nontransportable blocker activity to glutamate
transporters (Fig. 1). Therefore, b-substituted aspartates
are expected as a lead for developing useful blockers of
glutamate transporters.

In a previous study, we reported the synthesis of opti-
cally active vinylsilane-containing a-amino acids via the
chirality-transferring ester–enolate Claisen rearrange-
ment of a-acyloxytrialkylsilane (Scheme 1).6 This
method is characterized by the complete transfer of the
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chirality that is, a carbon center attached to a tert-butyl-
dimethylsilyl (TBDMS) group to both the 2- and 3-
positions of the product. Conversion of the resulting
amino acids to the b-substituted aspartates will be
achieved by the oxidative cleavage of the C–C double
bond of the vinylsilane moiety. We wish to report herein
the synthesis of a b-carbon-substituted analog of THA
1c, its a-methyl-substituted analog 1d, their C3-epimers
2c and 2d, and a b-carbon-substituted analog of TBOA
1e in optically active form. According to the previous
research, the construction of each 2S,3S-threo configu-
ration for 1c–e and 2S,3R-erythro configuration for 2c,d
will be achieved by this method using E- and Z-(S)-a-
acyloxysilanes, respectively.

The synthesis of THA analog 1c was started with opti-
cally active amino acid, syn-(2S,3R)-5c, prepared from
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Scheme 2. Reagents and conditions: (a) Boc2O, Na2CO3, H2O–dioxane (1:2), rt, 2 h (for 5c), 72 h (for 5d); (b) CH2N2, Et2O, 0 �C, 30min (67–94%,

two steps); (c) O3, AcOEt, )78 �C, 10min, then Me2S, rt, 1 h; (d) Jones oxidation (47–57%, two steps); (e) CH2N2, Et2O, 0 �C, 15min (quant); (f) 1M

NaOH, THF, rt, 16 h; (g) TFA (50 equiv), CH2Cl2, 0 �C, 3 h (94–99%, two steps).

5870 K. Sakaguchi et al. / Tetrahedron Letters 45 (2004) 5869–5872
crotyl alcohol (3) via the ester–enolate Claisen rear-
rangement of a-acyloxysilane E-4c as reported (Scheme
2).6a Prior to carrying out an oxidative degradation of
the terminal olefin, the amino, and the carboxyl groups
of syn-5c were protected with a Boc group and a methyl
ester, respectively (94%, two steps). Ozonolysis of the
protected syn-6c followed by Jones oxidation of the
resulting mixture afforded carboxylic acid syn-7c in 47%
yield for two steps, which, upon treatment with CH2N2,
gave diester syn-8c in quantitative yield. Deprotection
of syn-8c was performed by the following sequence
of reactions: (1) 1M NaOH in THF and (2) TFA
(50 equiv) in CH2Cl2. The desired 1c was obtained in
94% yield from syn-8c. a-Methyl-substituted analog 1d
of THA was synthesized by the use of syn-5d6a in the
same manner as for 1c.

The 3S-epimers of the THA analog 2c and 2d were
synthesized by the use of anti-(2S,3S)-5c7 and 5d, which
were prepared from 2-butyn-1-ol (9) via the ester–eno-
late Claisen rearrangement of optically active a-acyloxy-
silane Z-4, in the same manner as that of the
3R-isomers, respectively.6a Thus, four types of the b-
carbon-substituted analogs of THA 1c, 1d, 2c, and 2d
were synthesized.8

According to our synthetic plan in Scheme 1, the syn-
thesis of TBOA analog 1e was started with 3-phenyl-
propanal (10) (Scheme 3). The Wittig olefination of 10
with methyl (triphenylphosphoranylidene)acetate gave
ester 11 in 87% yield (E : Z ¼ 19 : 1). After separation
of the E=Z mixture, the pure E-11 was reduced with
DIBAL and the resulting allylic alcohol was converted
to TBDMS ether (94% from E-11). The reverse-Brook
rearrangement of the resulting silyl ether afforded a-
hydroxysilane 12 in 80% yield,9 which, upon Jones
oxidation, gave acylsilane 13 in quantitative yield.
Alternatively, this was prepared from 10 by the Horner–
Wadsworth–Emmons reaction with (a-phosphonoacyl)-
silane (14) in 75% yield.10 Enantioselective reduction of
13 with (+)-B-chloro diisopinocamphenylborane (DIP-
Cl)11 under reflux in THF afforded optically active 12,
whose optical purity and absolute configuration were
determined to be 88% ee and S by the modified Mosher
method using 1H NMR,12 respectively. Condensation of
(S)-12 with N-Boc-Gly gave a-acyloxysilane 15 (92%
from 13). According to Kazmaier’s13 and our protocol,6

a-acyloxysilane 15 was treated with LDA, ZnCl2 in
THF at )78 �C to room temperature to produce a
rearrangement product 16 in 86% yield as the sole dia-
stereomer. On treatment of 16 with 42% HBF4

(100 equiv) in 1,4-dioxane at 65 �C for 24 h, spontaneous
desilylation and removal of the Boc group proceeded to
give amino acid 17 in 68% yield. According to the
method for the synthesis of the THA analog, protection
of both the amino and the carboxyl groups gave 18
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CH2Cl2, )78 �C to rt, 1 h; (c) TBDMSCI (1.5 equiv), imidazole (1.5 equiv), CH2Cl2, )78 �C to rt, 1 h (94%, two steps); (d) sec-BuLi (4 equiv),

TMEDA (4.5 equiv), THF, )78 �C to rt, 1 h (80%); (e) Jones oxidation (quant); (f) (+)-DIP-CI (3 equiv), THF, reflux, 2 h; (g) N-Boc-Gly (2 equiv),

EDCI (2 equiv), DMAP (10mol%), CH2Cl2, 0 �C, 2 h (92%, two steps); (h) LDA (3.0 equiv), ZnCl2 (1.2 equiv), THF, )78 �C to rt (86%); (i) 42%

HBF4 (100 equiv), 1,4-dioxane, 65 �C, 24 h (68%); (j) Boc2O (1 equiv), Na2CO3 (2 equiv), H2O–1,4-dioxane (1:2), rt; (k) CH2N2, Et2O (80%, two

steps); (l) OsO4 (0.01 equiv), NaIO4 (4 equiv), H2O–acetone (2:1), 0 �C to rt, 24 h; (m) Jones oxidation (96%, two steps); (n) 1M NaOH (4 equiv),

THF, rt, 18 h; (o) TFA (50 equiv), CH2Cl2, 0 �C, 4 h, then recrystallization from EtOH (50% from 19); (p) (MeO)2POCH2COTBDMS (14, 1.2 equiv),

NaH (1 equiv), THF, 0 �C, 1 h (75%).

Table 1. Inhibition of glutamate uptake in MDCK cells

IC50 (M)

EAAT2 EAAT3

1a (THA) 19± 0.7 7.3 ± 0.37

1b (TBOA) 2.6± 0.16 1.4 ± 0.11

1c 28± 2.0 16±1.0

1d a a

1e 35± 2.7 15±1.2

2c 79± 5.1 16±0.7

2d a a

aNo inhibitory activity was observed at 100lM.
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(80%, two steps). An attempt to cleave the terminal
olefin by ozonolysis was not satisfactory and the desired
carboxylic acid 19 was afforded in 37% yield together
with trace amounts of aldehyde 20. The yield was much
improved (80%) when 18 was treated with OsO4

(0.01 equiv) and NaIO4 (4 equiv) in H2O–acetone (2:1)
at room temperature for 24 h. The by-produced 20
(18%) was converted to 19 by Jones oxidation in
quantitative yield. Finally, after deprotection of 19 in
two steps [(i) 1M NaOH, (ii) TFA], recrystallization of
the crude mixture from EtOH gave the TBOA analog
1e14 with >95% ee (50% yield from 19). The relative and
absolute configurations of 1e were determined to be
2S,3S by the following experiments: (1) Each J value
between Ha and Hb of the c-butyrolactone 21 or its C2-
epimer 22, which was prepared from 20 as shown in
Scheme 4, was 9.8 and 6.8Hz, respectively. These results
indicate that 21 possesses 2,3-trans configuration. (2)
The absolute configuration of the C2-position of 1e was
determined to be S by comparison of the 1H NMR
spectral data of its (R)- and (S)-MTPA-amide.15

Inhibition of glutamate uptake by the synthetic aspar-
tate derivatives was preliminarily assessed in MDCK
cells stably expressing EAAT2 (glial transporter) or
EAAT3 (neuronal transporter).5b;16 The values of 50%
inhibitory concentration (IC50) are shown in Table 1.
The activity of 1e was about one-tenth of that of TBOA,
and activities of both 1c and 2c were about a half of that
21
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of THA. On the other hand, 1d and 2d did not show any
inhibitory activity at 100 lM. These results suggest that
the oxygen function at the b-position of aspartate would
be one of the important factors for the inhibition of
glutamate transporters. In the previous studies on the
inhibitors of glutamate transporter, the active confor-
mations of both aspartate and TBOA were proposed to
be HO2C–C–C–CO2H anti (conformer A) (Fig. 2).5b;17

In this study, the small J value between Hc and Hd of 1e
(3.2Hz) as well as that of TBOA (2.5Hz) showed that
the Hc–C–C–Hd gauche conformers (A and/or C) are
predominant over the conformer B. Taking the gauche
effect18 between the NH2 group and the OR group and
the electrostatic effects into consideration, the con-
former A of TBOA would have the advantage over the
conformer C. The slightly larger J value of 1e compared
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to that of TBOA suggested that the loss of gauche effect
by exchange of an oxygen atom to a carbon atom in the
X group decreased the contribution of the conformer A
in 1e, which would result in a decrease of the inhibitory
activity. Therefore, our present results supported the
hypothesis that the active conformation is conformer A.
Further studies regarding the structure–activity rela-
tionship of glutamate transporters of the synthetic 1c,
1d, 2c, 2d, and 1e are in progress in our laboratories.
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